Add like
Add dislike
Add to saved papers

Interaction between phytoplankton and heterotrophic bacteria in Arctic fjords during glacial melting season as revealed by eDNA metabarcoding.

The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. In contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app