Add like
Add dislike
Add to saved papers

Regeneration of sedimentary manganese in coastal sediments deciphered by 224 Ra/ 228 Th disequilibria.

Manganese (Mn) is a vital micronutrient and participates in multiple biochemical reactions and enzyme catalytic activities. Its cycling is tightly connected with iron (Fe) and nitrogen (N). Although coastal sediments are recognized as an important source of dissolved Mn to marine waters, this contribution remains inadequately quantified. In the summer of 2019 and 2020, we investigated benthic fluxes of dissolved Mn, Fe and ammonia (NH4 + ) in the Changjiang Estuary and East China Sea shelf using the 224 Ra/228 Th disequilibrium approach. Our results showed that the availability of reactive Mn oxides (MnD ) played a crucial role in sedimentary Mn regeneration, as revealed by the positive correlation (r = 0.75, P < 0.05) between Mn fluxes and MnD contents. In addition, the positive correlation (r = 0.80, P < 0.01) between the decomposition rate of sedimentary organic matter (NH4 + flux) and Mn flux suggested that the reduction of MnD was mainly driven by the organic carbon oxidation. Furthermore, NH4 + and Mn fluxes exhibited an exponential increase against the product of dissolved oxygen concentration (DO) and the amplification factor of sediment surface area (ξ). In this context, ξ represents the rate of bottom water DO pumping into the sediment via physical reworking and bio-irrigation. In contrast to the most efficient Fe released from sediment overlain by hypoxic waters (DO <62.5 μM), the maximum Mn flux (63.5 ± 9.4 mmol m-2 d-1 ) was observed at sediment with oxygenated bottom waters (DO = 158 μM). This implies that the regeneration of Mn was associated with a more permissive redox state compared to that of Fe. We further demonstrated that Mn flux was 1-2 orders of magnitude higher than those estimated through traditional methods. Therefore, coastal sediments may contribute more Mn to ocean waters than previously thought. The precise estimation of Mn release from coastal sediments holds critical significance for research on the global Mn budget.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app