Add like
Add dislike
Add to saved papers

High-energy, low-jitter, narrowband ps probe laser for kHz-rate fs/ps coherent anti-Stokes Raman scattering.

Optics Letters 2024 April 16
Hybrid fs/ps coherent anti-Stokes Raman scattering (CARS) thermometry often utilizes ps probe pulses derived from pulse shaping or spectrally filtering the primary laser source or by synchronization with a low repetition rate external laser. This results in limited energy, spectral resolution, and/or repetition rate of the ps probe. In this work, a master-oscillator power-amplifier (MOPA) laser was synchronized to the oscillator of a Ti:sapphire regenerative amplifier to achieve high-energy (600 µJ), narrowband (58 ps) probe pulses at kHz repetition rates. Temporal filtering allows the pulse characteristics to be adjusted for each application. At 25 Torr, relevant to high-speed flows, the kHz-rate MOPA system generated signal-to-noise ratios 3× higher in nitrogen and had improved precision relative to a 10 ps probe derived from spectral filtering and the power-amplifier. The MOPA system also enabled single-shot ro-vibrational hybrid fs/ps CARS thermometry in 650 K heated air.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app