Add like
Add dislike
Add to saved papers

Extending the reach of multi-core fiber via Voronoi constellations with concatenated multilevel coding.

Optics Letters 2024 April 16
This Letter proposes a novel, to the best of our knowledge, coded modulation scheme for randomly coupled multi-core fiber (RC-MCF) via multidimensional (MD) constellation with concatenated two-level multilevel coding (MLC). In the proposed system, the 16-dimensional (16D) Voronoi constellation (VC), naturally fitting with the 16 degrees of freedom of a four-core fiber (two quadratures, two polarizations, and four cores), is generated by a latticed-based shaping method to provide higher shaping gains. Moreover, combining it with the concatenated two-level MLC can further achieve better performance-complexity trade-off. It is demonstrated by simulation results of long-haul multi-channel RC-MCF transmission that the proposed coded modulation scheme for four-core fiber transmission offers 77% reduction in the number of decoding operations and up to 21% (585 km) reach increase over the conventional bit-interleaved coded modulation scheme for quadrature amplitude modulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app