Add like
Add dislike
Add to saved papers

NGDE: A Niching-Based Gradient-Directed Evolution Algorithm for Nonconvex Optimization.

Nonconvex optimization issues are prevalent in machine learning and data science. While gradient-based optimization algorithms can rapidly converge and are dimension-independent, they may, unfortunately, fall into local optimal solutions or saddle points. In contrast, evolutionary algorithms (EAs) gradually adapt the population of solutions to explore global optimal solutions. However, this approach requires substantial computational resources to perform numerous fitness function evaluations, which poses challenges for high-dimensional optimization in particular. This study introduces a novel nonconvex optimization algorithm, the niching-based gradient-directed evolution (NGDE) algorithm, designed specifically for high-dimensional nonconvex optimization. The NGDE algorithm generates potential solutions and divides them into multiple niches to explore distinct areas within the feasible region. Subsequently, each individual creates candidate offspring using the gradient-directed mutation operator we designed. The convergence properties of the NGDE algorithm are investigated in two scenarios: accessing the full gradient and approximating the gradient with mini-batch samples. The experimental studies demonstrate the superior performance of the NGDE algorithm in minimizing multimodal optimization functions. Additionally, when applied to train the neural networks of LeNet-5, NGDE shows significantly improved classification accuracy, especially in smaller training sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app