Add like
Add dislike
Add to saved papers

WTAP-mediated N6-methyladenine Modification of circEEF2 Promotes Lung Adenocarcinoma Tumorigenesis by Stabilizing CANT1 in an IGF2BP2-dependent Manner.

N6-methyladenosine (m6A) is a common posttranscriptional RNA modification and plays an important role in cancer biology. Circular RNAs (circRNAs) are also reported to participate in lung adenocarcinoma (LUAD) progression. Here, we aimed to investigate the functions of Wilms tumor 1-associating protein (WTAP) methyltransferase and circEEF2 in LUAD cell tumorigenesis, and probe whether circEEF2 functioned through WTAP-induced m6A modification and its potential mechanisms. Functional analyses were conducted by tube formation, sphere formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays in vitro as well as tumor formation experiments in mice, respectively. The N6-methyladenine (m6A) modification in circEEF2 mRNA was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between IGF2BP2 (Insulin Like Growth Factor 2 MRNA-Binding Protein 2) and circEEF2 or Calcium-activated nucleotidase 1 (CANT1) mRNA was confirmed using RIP assay. LUAD tissues and cells showed high circEEF2 expression, and the deficiency of circEEF2 suppressed LUAD cell angiogenesis, stemness, proliferation, migration, and invasion. WTAP induced circEEF2 m6A modification. WTAP silencing repressed the oncogenic phenotypes of LUAD cells via stabilizing circEEF2 in an m6A-dependent manner. IGF2BP2 interacted with circEEF2 and CANT1, and WTAP and circEEF2 could regulate CANT1 expression through IGF2BP2. The inhibition of LUAD cell oncogenic phenotypes caused by circEEF2 deficiency was abolished by CANT1 overexpression. In addition, WTAP silencing impeded LUAD growth via modulating circEEF2 and CANT1 in vivo. WTAP-mediated m6A modification of circEEF2 promotes lung adenocarcinoma growth and tumorigenesis by stabilizing CANT1 through IGF2BP2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app