Add like
Add dislike
Add to saved papers

Efficient Electrochemical Microsensor for the Simultaneous Measurement of Hydrogen Peroxide and Ascorbic Acid in Living Brains.

Analytical Chemistry 2024 April 16
Hydrogen peroxide (H2 O2 ) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2 O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2 O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2 O2 and AA in linear ranges of 0.5-900 and 10-1000 μM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2 O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app