Add like
Add dislike
Add to saved papers

Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types.

Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETi) is associated with adverse effects. Here, we explore a strategy for targeting BETi to β-cells by exploiting the high zinc (Zn2+ ) concentration in β-cells relative to other cell types. We report the synthesis of a novel, Zn2+ -chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+ -chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+ . Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β-cells stimulated with the pro-inflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β-cells and mTomato in insulin-negative cells (non-β-cells). Surprisingly, Zn2+ -chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β- and α-cells; however, (+)-JQ1-DPA was less effective in macrophages, a non-endocrine islet cell type. Intriguingly, the non-Zn2+ -chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared to (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+ -chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ -chelation as an approach to selectively target small molecules to pancreatic β-cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app