Add like
Add dislike
Add to saved papers

A novel immune-related long noncoding RNA (lncRNA) pair model to predict the prognosis of triple-negative breast cancer.

BACKGROUND: Breast cancer (BC) is the most prevalent cancer type and is the principal cause of cancer-related death in women. Anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) immunotherapy has shown promising effects in metastatic triple-negative breast cancer (TNBC), but the potential factors affecting its efficacy have not been elucidated. Immune-related long noncoding RNAs (irlncRNAs) have been reported to be involved in immune escape to influence the carcinogenic process through the PD-1/PD-L1 signaling pathway. Therefore, exploring the potential regulatory mechanism of irlncRNAs in PD-1/PD-L1 immunotherapy in TNBC is of great importance.

METHODS: We retrieved transcriptome profiling data from The Cancer Genome Atlas (TCGA) and identified differentially expressed irlncRNA (DEirlncRNA) pairs. Least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct a risk assessment model.

RESULTS: Receiver operating characteristic (ROC) curve analysis indicated that the risk model may serve as a potential prediction tool in TNBC patients. Clinical stage and risk score were proved to be independent prognostic predictors by univariate and multivariate Cox regression analyses. Subsequently, we investigated the correlation between the risk model and tumor-infiltrating immune cells and immune checkpoints. Finally, we identified USP30-AS1 through the StarBase and Multi Experiment Matrix (MEM) databases, predicted the potential target genes of USP30-AS1, and then discovered that these target genes were closely associated with immune responses.

CONCLUSIONS: Our study constructed a risk assessment model by irlncRNA pairs regardless of expression levels, which contributed to predicting the efficacy of immunotherapy in TNBC. Furthermore, the lncRNA USP30-AS1 in the model was positively correlated with the expression of PD-L1 and provided a potential therapeutic target for TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app