Add like
Add dislike
Add to saved papers

Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors.

Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds. Then, the mechanical strength of the hydrogel was further enhanced by immersing it in an ammonium sulfate solution based on the Hofmeister effect between gelatin and salt. Finally, the gelatin/oxidized sodium carboxymethylcellulose hydrogel exhibited high tensile properties (614 %), tensile fracture strength (2.6 MPa), excellent compressive fracture strength (64 MPa), and compressive toughness (4.28 MJ/m3 ). Also, the electrical conductivity reached 3.94 S/m. The hydrogel after salt soaked was fabricated as strain sensors, which could accurately monitor the movement of many joints in the human body, such as fingers, wrists, elbows, neck, and throat. Therefore, the designed hydrogel fully originated from natural polymers and has great application potential in motion detection and information recording.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app