Add like
Add dislike
Add to saved papers

Microplastic contaminants detection in aquatic environment by hydrophobic cerium oxide nanoparticles.

Chemosphere 2024 April 13
Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1 cm-2 and detection limit of ∼0.22 mgmL-1 , with promising correlation coefficient (R) towards the detection of PE (∼27-32 μm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 μm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app