Add like
Add dislike
Add to saved papers

Cryoablation with KCl Solution Enhances Necrosis and Apoptosis of HepG2 Liver Cancer Cells.

Cryoablation has become a valuable treatment modality for the management of liver cancer. However, one of the major challenges in cryosurgery is the incomplete cryodestruction near the edge of the iceball. This issue can be addressed by optimizing cryoablation parameters and administering thermotropic drugs prior to the procedure. These drugs help enhance tumor response, thereby strengthening the destruction of the incomplete frozen zone in liver cance. In the present study, the feasibility and effectiveness of a thermophysical agent, KCl solution, were investigated to enhance the cryodestruction of HepG2 human liver cancer cells. All cryoablation parameters were simultaneously optimized in order to significantly improve the effect of cryoablation, resulting in an increase in the lethal temperature from - 25 °C to - 17 °C. Subsequently, it was found that the application of KCl solution prior to freezing significantly decreased cell viability post-thaw compared to cryoablation treatment alone. This effect was attributed to the eutectic effect of KCl solution. Importantly, it was found that the combination of KCl solution and freezing was less effective when applied to LO2 human liver normal cells. The data revealed that the ratio of mRNA levels of Bcl-2 and bax decreased significantly more in HepG2 cells than in LO2 cells when cryoablation was used with KCl solution. In conclusion, the results of this study demonstrate the effectiveness of KCl solution in promoting cryoablation and describe a novel therapeutic model for the treatment of liver cancer that may distinguish between cancer and normal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app