Add like
Add dislike
Add to saved papers

Insights into the hydrolysis/alcoholysis/ammonolysis mechanisms of ethylene naphthalate dimer using density functional theory (DFT) method.

Hydrolysis, alcoholysis and ammonolysis are viable routes for the efficient degradation and recycling of polyethylene naphthalate (PEN) plastic waste. Various possible hydrolysis/alcoholysis/ammonolysis reaction pathways for the degradation mechanism of the ethylene naphthalate dimer were investigated using the density functional theory (DFT) B3P86/6-31++G(d,p). To determine the thermodynamic and kinetic parameters, geometric structure optimization and frequency calculation were performed on a range of intermediates, transition states, and products associated with the reaction. The calculation results show that the highest energy barrier of the main element reaction step in hydrolysis is about 169.0 kJ/mol, the lowest is about 151.0 kJ/mol for ammonolysis, and the second is about 155.0 kJ/mol for alcoholysis. The main hydrolysis products of the ethylene naphthalate dimer are 2,6-naphthalenedicarboxylic acid and ethylene glycol; the main products of alcoholysis are dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol, and the main products of ammonolysis are naphthalene-2,6-dicarboxamide and ethylene glycol. Furthermore, in the process of ethylene naphthalate dimer hydrolysis/alcoholysis/ammonolysis, the decomposition reaction in the NH3 atmosphere is better than that in methanol, and the reaction in CH3 OH is better than that in the H2 O molecular environment, and the increase in reaction temperature can increase its spontaneity. Our study presents the molecular mechanism of PEN hydrolysis/alcoholysis/ammonolysis and provides a reference for studying the degradation of other plastic wastes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app