Add like
Add dislike
Add to saved papers

Soil water dynamics and deep percolation in an agricultural experimental area of the North China Plain over the past 50 years: Based on field monitoring and numerical modeling.

The unregulated irrigation systems used in the late 20th century have led to increasingly severe deep percolation (DP) in the agricultural irrigation areas of the North China Plain. This has become an important factor limiting the efficient utilization of water resources and sustainable environmental development in these irrigation areas. However, the thick vadose zone is hydrodynamically exceptionally complex. The soil hydrological cycle is constantly changing under the influence of major climate change and human activity, thereby causing changes in DP that are difficult to quantify accurately. Here, the Luancheng Agricultural Irrigation District in North China was selected for a continuous 20-year in situ experiment. Soil-water dynamics were monitored using neutron probes and tensiometers, to determine the complete annual soil-water cycle and the hydrodynamic properties of the thick vadose zone irrigation district. For 1971-2021, DP was simulated using the HYDRUS-1D model and was verified by fitting observed values. Soil water content (SWC) exhibited similar trends in years that differed in terms of the amounts of irrigation and precipitation. The 0-100 cm soil layer was significantly affected by precipitation and other factors, and recharge >60 mm/d caused percolation. DP occurred mostly after irrigation or during the period of intensive precipitation in July-October. The maximum percolation rate was 16.9 mm/d under the present irrigation method. The main factors leading to DP were soil water storage capacity (R2  = 0.86) and precipitation (R2  = 0.54). Under the evolution of irrigation measures in the last 50 years, the average DP has gradually decreased from 574.2 mm (1971-1990) to 435.5 mm (2005-2021). However, a substantial amount of precipitation and irrigation water infiltrated the soil and percolated into the deep soil layer without being utilized by the crop. Therefore, there is an urgent need to consider measures to reduce DP to improve water-use efficiency in agriculture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app