Add like
Add dislike
Add to saved papers

Growth, nutrient removal, and lipid productivity promotion of Chlorella sorokiniana by phosphate solubilizing bacteria Bacillus megatherium in swine wastewater: Performances and mechanisms.

Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app