Add like
Add dislike
Add to saved papers

Electrophoresis of a weakly charged dielectric fluid droplet in a cylindrical pore.

Electrophoresis 2024 April 14
Electrophoresis of a weakly charged dielectric droplet with constant surface charge density in a chargeless cylindrical pore is investigated theoretically in this study, focusing on the boundary confinement effect of the double layer, which in turn determines the ultimate motion of the droplet. A patched pseudo-spectral method based on the Chebyshev polynomial is adopted to solve the resulting governing fundamental electrokinetic equations. Mobility reversal, among other interesting phenomena, is observed when the droplet is in a narrow cylindrical pore. No such observation was made in the corresponding motion of a rigid particle. The droplet with a thick double layer may even move against the prediction based on the Coulomb electrostatic law, for instance, a positively charged droplet may move against the electric field. The significant enhancement of the motion-deterring double layer polarization due to the severe steric boundary confinement within a narrow cylindrical pore is found to be responsible for this seemingly peculiar phenomenon. Moreover, smaller droplets may move in the opposite direction of the larger ones. The results are useful in capillary electrophoresis involving droplets in particular and migration of droplets through narrow channels in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app