Add like
Add dislike
Add to saved papers

Rotationally Invariant Circuits: Universality with the Exchange Interaction and Two Ancilla Qubits.

Universality of local unitary transformations is one of the cornerstones of quantum computing with many applications and implications that go beyond this field. However, it has recently been shown that this universality does not hold in the presence of continuous symmetries: generic symmetric unitaries on a composite system cannot be implemented, even approximately, using local symmetric unitaries on the subsystems. In this Letter, we show that, despite these constraints, any SU(2) rotationally invariant unitary can be realized with the Heisenberg exchange interaction, which is 2-local and rotationally invariant, provided that the system interacts with a pair of ancilla qubits. We also show that a single ancilla is not enough to achieve universality. Furthermore, we study qubit circuits formed from k-local rotationally invariant unitaries and fully characterize the constraints imposed by locality on the realizable unitaries. We also find an interpretation of these constraints in terms of the average energy of states with a fixed angular momentum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app