Add like
Add dislike
Add to saved papers

Vortex Pattern Stabilization in Thin Films Resulting from Shear Thickening of Active Suspensions.

The need for structuring on micrometer scales is abundant, for example, in view of phononic applications. We here outline a novel approach based on the phenomenon of active turbulence on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size leads to regular spatial organization of these objects. Our approach opens a new path toward functionalization through patterning of thin films and membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app