Add like
Add dislike
Add to saved papers

Hypervolemia in Dialysis Patients Impairs STAT3 Signaling and Upregulates miR-142-3p: Effects on IL-10 and IL-6.

Fluid overload in hemodialysis patients (HD) has been proven to be associated with inflammation. Elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6) appear to be inadequately counterbalanced by the anti-inflammatory cytokine interleukin-10 (IL-10). We initiated a cross-sectional study enrolling 40 HD patients who were categorized by a bioimpedance measurement in normovolemic (N; 23) and hypervolemic (H; 17) groups to test whether IL-10- and IL-6-related signal transduction pathways (signal transducer of transcript 3: STAT3) and/or a post-transcriptional regulating mechanism (miR-142) are impaired by hypervolemia. IL-10/IL-6 transcript and protein production by PBMCs (peripheral blood mononuclear cells) were determined. Phospho-flow cytometry was used to detect the phosphorylated forms of STAT3 (pY705 and pS727). miR-142-3p/5p levels were detected by qPCR. Hypervolemic patients were older, more frequently had diabetes, and showed higher CRP levels. IL-10 transcripts were elevated in H patients but not IL-10 protein levels. In spite of the elevated mRNA expression of the suppressor of cytokine expression 3 (SOCS3), IL-6 mRNA and protein expression were increased in immune cells of H patients. The percentage of cells staining positive for STAT3 (pY705) were comparable in both groups; in STAT3 (pS727), however, the signal needed for full transactivation was decreased in H patients. miR-142-3p, a proven target of IL-10 and IL-6, was significantly elevated in H patients. Insufficient phosphorylation of STAT3 may impair inflammatory and anti-inflammatory cytokine signaling. How far degradative mechanisms induced by elevated miR-142-3p levels contribute to an inefficient anti-inflammatory IL-10 signaling remains elusive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app