Add like
Add dislike
Add to saved papers

Notch2 Regulates the Function of Bovine Follicular Granulosa Cells via the Wnt2/β-Catenin Signaling Pathway.

Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1 , which encodes β-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in bovine follicular GC development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app