Add like
Add dislike
Add to saved papers

Investigating the Impact Behavior of Carbon Fiber/Polymethacrylimide (PMI) Foam Sandwich Composites for Personal Protective Equipment.

Materials 2024 April 7
To improve the shock resistance of personal protective equipment and reduce casualties due to shock wave accidents, this study prepared four types of carbon fiber/polymethacrylimide (PMI) foam sandwich panels with different face/back layer thicknesses and core layer densities and subjected them to quasi-static compression, low-speed impact, high-speed impact, and non-destructive tests. The mechanical properties and energy absorption capacities of the impact-resistant panels, featuring ceramic/ultra-high molecular-weight polyethylene (UHMWPE) and carbon fiber/PMI foam structures, were evaluated and compared, and the feasibility of using the latter as a raw material for personal impact-resistant equipment was also evaluated. For the PMI sandwich panel with a constant total thickness, increasing the core layer density and face/back layer thickness enhanced the energy absorption capacity, and increased the peak stress of the face layer. Under a constant strain, the energy absorption value of all specimens increased with increasing impact speed. When a 10 kg hammer impacted the specimen surface at a speed of 1.5 m/s, the foam sandwich panels retained better integrity than the ceramic/UHMWPE panel. The results showed that the carbon fiber/PMI foam sandwich panels were suitable for applications that require the flexible movement of the wearer under shock waves, and provide an experimental basis for designing impact-resistant equipment with low weight, high strength, and high energy absorption capacities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app