Add like
Add dislike
Add to saved papers

Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sintering.

Materials 2024 March 32
Magnesium (Mg) and its alloys offer promise for aerospace, railway, and 3D technology applications, yet their inherent limitations, including inadequate strength, pose challenges. Magnesium matrix composites, particularly with metallic reinforcements like titanium (Ti) and its alloys, present a viable solution. Therefore, this study investigates the impact of Ti6Al4V reinforcement on AZ31 magnesium alloy composites produced using pulse plasma sintering (PPS). Results show enhanced microhardness of the materials due to improved densification and microstructural refinement. However, Ti6Al4V addition decreased corrosion resistance, leading to strong microgalvanic corrosion and substrate dissolution. Understanding these effects is crucial for designing Mg-based materials for industries like petrochemicals, where degradation-resistant materials are vital for high-pressure environments. This research provides valuable insights into developing Mg-Ti6Al4V composites with tailored properties for diverse industrial applications, highlighting the importance of considering corrosion behavior in material design. Further investigation is warranted to establish predictive correlations between Ti6Al4V content and corrosion rate for optimizing composite performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app