Add like
Add dislike
Add to saved papers

Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material.

Materials 2024 March 29
This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius ρmin , which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius ρmin to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app