Add like
Add dislike
Add to saved papers

Passivation of Sodium Benzenesulfonate at the Buried Interface of a High-Performance Wide-Bandgap Perovskite Solar Cell.

Materials 2024 March 28
The phase segregation of wide-bandgap perovskite is detrimental to a device's performance. We find that Sodium Benzenesulfonate (SBS) can improve the interface passivation of PTAA, thus addressing the poor wettability issue of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA). This improvement helps mitigate interface defects caused by poor contact between the perovskite and PTAA, reducing non-radiative recombination. Additionally, enhanced interface contact improves the crystallinity of the perovskite, leading to higher-quality perovskite films. By synergistically controlling the crystallization and trap passivation to reduce the phase segregation, SBS-modified perovskite solar cells (PSCs) achieved a power conversion efficiency (PCE) of 20.27%, with an open-circuit voltage ( V oc ) of 1.18 V, short-circuit current density ( J sc ) of 20.93 mA cm-2 , and fill factor (FF) of 82.31%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app