Add like
Add dislike
Add to saved papers

Microstructure of Deposits Sprayed by a High Power Torch with Flash Boiling Atomization of High-Concentration Suspensions.

Materials 2024 March 26
The main objective of this study was to use flash boiling atomization as a new method to inject suspensions with high solid content into the high-power plasma flow. The water-based suspension was prepared with submicron titanium oxide particles with an average size of 500 nm. The investigated solid concentrations were 20, 40, 55 and 70 wt%. Two plasma torches operated at 33, 70 and 110 kW were used to investigate the effect of increasing power on the deposited microstructure and deposition efficiency. At low torch power, the deposition efficiency decreased with increasing solid concentration, and deposits with a high number of unmelted particles were obtained with 70 wt% suspensions. At high torch power, the deposition efficiency increased with increasing solid concentration, and dense deposits were obtained with 70 wt% suspensions. XRD analysis was performed on all deposits to determine the distribution of rutile and anatase phases. The percentage of the anatase phase varied from 35.7% to 66.9%, depending on the power input and solid concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app