Add like
Add dislike
Add to saved papers

A General Method to Access Underexplored Ylideneamino Sulfates as Interrupted Beckmann-Type Rearrangement Intermediates.

The Beckmann rearrangement of ketoximes to their corresponding amides, using a Brønsted acid-mediated fragmentation and migration sequence, has found wide-spread industrial application. We postulated that the development of a methodology to access ylideneamino sulfates using tributylsulfoammonium betaine (TBSAB) would afford isolable Beckmann-type intermediates and competent partners for subsequent rearrangement cascades. The ylideneamino sulfates generated, isolated as their tributylammonium salts, are sufficiently activated to undergo Beckmann rearrangement without additional reagent activation. The generation of sulfuric acid in situ from the ylideneamino sulfate giving rise to a routine Beckmann rearrangement and additional amide bond cleavage to the corresponding aniline was detrimental to reaction success. The screening of bases revealed inexpensive sodium bicarbonate to be an effective additive to prevent classic Brønsted acid-mediated fragmentation and achieve optimal conversions of up to 99%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app