Add like
Add dislike
Add to saved papers

Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson's Disease Risk.

Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app