Journal Article
Review
Add like
Add dislike
Add to saved papers

Artificial Intelligence Approaches for Predicting the Risks of Durable Mechanical Circulatory Support Therapy and Cardiac Transplantation.

Background: The use of AI-driven technologies in probing big data to generate better risk prediction models has been an ongoing and expanding area of investigation. The AI-driven models may perform better as compared to linear models; however, more investigations are needed in this area to refine their predictability and applicability to the field of durable MCS and cardiac transplantation. Methods: A literature review was carried out using Google Scholar/PubMed from 2000 to 2023. Results: This review defines the knowledge gaps and describes different AI-driven approaches that may be used to further our understanding. Conclusions: The limitations of current models are due to missing data, data imbalances, and the uneven distribution of variables in the datasets from which the models are derived. There is an urgent need for predictive models that can integrate a large number of clinical variables from multicenter data to account for the variability in patient characteristics that influence patient selection, outcomes, and survival for both durable MCS and HT; this may be fulfilled by AI-driven risk prediction models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app