Add like
Add dislike
Add to saved papers

An Adaptive Temporal Convolutional Network Autoencoder for Malicious Data Detection in Mobile Crowd Sensing.

Sensors 2024 April 8
Mobile crowdsensing (MCS) systems rely on the collective contribution of sensor data from numerous mobile devices carried by participants. However, the open and participatory nature of MCS renders these systems vulnerable to adversarial attacks or data poisoning attempts where threat actors can inject malicious data into the system. There is a need for a detection system that mitigates malicious sensor data to maintain the integrity and reliability of the collected information. This paper addresses this issue by proposing an adaptive and robust model for detecting malicious data in MCS scenarios involving sensor data from mobile devices. The proposed model incorporates an adaptive learning mechanism that enables the TCN-based model to continually evolve and adapt to new patterns, enhancing its capability to detect novel malicious data as threats evolve. We also present a comprehensive evaluation of the proposed model's performance using the SherLock datasets, demonstrating its effectiveness in accurately detecting malicious sensor data and mitigating potential threats to the integrity of MCS systems. Comparative analysis with existing models highlights the performance of the proposed TCN-based model in terms of detection accuracy, with an accuracy score of 98%. Through these contributions, the paper aims to advance the state of the art in ensuring the trustworthiness and security of MCS systems, paving the way for the development of more reliable and robust crowdsensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app