Add like
Add dislike
Add to saved papers

An Improved OMP Algorithm for Enhancing the Anti-Interference Performance of Array Antennas.

Sensors 2024 April 5
The demand for precise positioning in noisy environments has propelled the development of research on array antenna radar systems. Although the orthogonal matching pursuit (OMP) algorithm demonstrates superior performance in signal reconstruction, its application efficacy in noisy settings faces challenges. Consequently, this paper introduces an innovative OMP algorithm, DTM_OMP_ICA (a dual-threshold mask OMP algorithm based on independent component analysis), which optimizes the OMP signal reconstruction framework by utilizing two different observation bases in conjunction with independent component analysis (ICA). By implementing a mean mask strategy, it effectively denoises signals received by array antennas in noisy environments. Simulation results reveal that compared to traditional OMP algorithms, the DTM_OMP_ICA algorithm shows significant advantages in noise suppression capability and algorithm stability. Under optimal conditions, this algorithm achieves a noise suppression rate of up to 96.8%, with its stability also reaching as high as 99%. Furthermore, DTM_OMP_ICA surpasses traditional denoising algorithms in practical denoising applications, proving its effectiveness in reconstructing array antenna signals in noisy settings. This presents an efficient method for accurately reconstructing array antenna signals against a noisy backdrop.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app