Add like
Add dislike
Add to saved papers

Correlation between monosaccharide, oligosaccharide, and microbial community profile changes in traditional soybean brick (meju) fermentation.

Meju is essential for making diverse traditional fermented soybean foods in Korea. To understand the changes in carbohydrates during fermentation, we aimed to identify autochthonous microorganisms from spontaneously fermented meju and compare the alterations in monosaccharides and oligosaccharides throughout the fermentation process. Microbial diversity was determined using a metabarcoding approach, and monosaccharide and oligosaccharide profiles were obtained by HPLC-Q-TOF MS and HPLC-MS/MS analyses, respectively. The dominant bacterial genera were Weissella, Lactobacillus, and Leuconostoc, while Mucor was highly abundant in the fungal community. The total monosaccharide content increased from Day 0 to Day 50, with the highest amount being 4.37 mg/g. Oligosaccharide profiling revealed the degradation of soybean dietary fiber during fermentation, and novel oligosaccharide structures were also discovered. Correlation analysis revealed that the fungus Mucor was positively related to pentose-containing oligosaccharides, galactose, and galacturonic acid, indicating that Mucor may degrade soybean dietary fibers such as xylogalacturonan, arabinogalactan, and rhamnogalacturonan. The negative relationships between the abundances of Weissella and oligo- and monosaccharides suggested that the bacteria may utilize saccharides for fermentation. These findings provide insights into the mechanisms underlying carbohydrate degradation and utilization; the key components involved in saccharide transformation that contribute to the characteristics of traditional meju were subsequently identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app