Add like
Add dislike
Add to saved papers

Comparative analysis of thermal indices for modeling cold and heat stress in US dairy systems.

Quantifying the impact of thermal stress on milk yields is essential to effectively manage present and future risks in dairy systems. Despite the existence of numerous heat indices designed to communicate stress thresholds, little information is available regarding the accuracy of different indices in estimating milk yield losses from both cold and heat stress at large spatio-temporal scales. To address this gap, we comparatively analyzed the performance of existing thermal indices in capturing US milk yield response to both cold and heat stress at the national scale. We selected four commonly used thermal indices: the Temperature and Humidity Index (THI), Black Globe Humidity Index (BGHI), Adjusted Temperature and Humidity Index (THIadj), and Comprehensive Climate Index (CCI). Using a statistical panel regression model with observational and reanalysis weather data from 1981-2020, we systematically compared the patterns of yield sensitivities and statistical performance of the four indices. We found that the US state-level milk yield variability was better explained by the THIadj and CCI, which combine the effects of temperature, humidity, wind, and solar radiation. Our analysis also reveals a continuous and nonlinear responses of milk yields to a range of cold to heat stress across all four indices. This implies that solely relying on fixed thresholds of these indices to model milk yield changes may be insufficient to capture cumulative thermal stress. Cold extremes reduced milk yields comparably to those impacted by heat extremes on the national scale. Additionally, we found large spatial variability in milk yield sensitivities, implying further limitations to the use of fixed thresholds across locations. Moreover, we found decreased yield sensitivity to thermal stress in the most recent two decades, suggesting adaptive changes in management to reduce weather-related risks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app