Add like
Add dislike
Add to saved papers

Unraveling mechanisms and failures of stray current corrosion in urban Subway adjacent pipeline networks through statistical insights and 3D simulation.

The escalating expansion of urban subway systems in recent years has accentuated the issue of stray current corrosion within pipeline networks, emerging as a critical concern for urban safety. This paper delves into the intricate interplay between these phenomena, employing data-driven statistical analyses to elucidate the coupling characteristics between subway lines and the occurrence of failures in adjacent buried pipelines. An advanced three-dimensional finite element model was developed for stray current corrosion in pipelines, seamlessly integrating empirical data and physics-based modeling, which is to uncover the spatial nuances and multifaceted impacts on subway pipeline corrosion from both macro and micro perspectives under varying influencing factors. The study unveils a pronounced geographical and functional affinity between urban subway networks and metallic pipeline networks. The coupling attributes between subway systems and pipelines, such as distance, angle, and pipeline-specific characteristics including material and age, assume pivotal roles. The results further emphasize the hierarchical order of influence, with stray current intensity holding the greatest sway, followed by the distance between subway and pipelines, the angle between them, and soil resistivity. This paper offers a comprehensive investigation of the interrelationships and influential factors between subway systems and adjacent pipelines. It contributes to the mitigation and management of stray current corrosion in pipelines induced by nearby rail transit, thereby enhancing the resilience of both subway and pipeline networks within urban areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app