Add like
Add dislike
Add to saved papers

Distinct photochemistry of adsorbed and coprecipitated dicarboxylates with ferrihydrite: Implications for iron reductive dissolution and carbon stabilization.

Although ligand-promoted photodissolution of ferrihydrite (FH) has long been known for low molecular weight organic acids (LMWOAs), such as oxalate (Oxa) and malonate (Mal), photochemistry of coprecipitated FH with Oxa and Mal remains unknown, despite the importance of these mineral-organic associations in carbon retention has been acknowledged recently. In this study, ferrihydrite-LMWOAs associations (FLAs) were synthesized under circumneutral conditions. Photo-dissolution kinetics of FLAs were compared with those of adsorbed LMWOAs on FH surface and dissolved Fe-LMWOAs complexes through monitoring Fe(II) formation and organic carbon decay. For aqueous Fe(III)-LMWOAs complexes, Fe(II) yield was controlled by the initial concentration of LMWOAs and nature of photochemically generated carbon-centered radicals. Inner-sphere mononuclear bidentate (MB) configuration dominated while LMWOAs were adsorbed on the FH surface. MB complex of FH-Oxa was more photoreactive, leading to the rapid depletion of Oxa. Oxa can be readsorbed but in the form of binuclear bidentate and outer-sphere complexation, with much lower photoreactivity. While LMWOAs was coprecipitated with FH, the combination mode of LMWOAs with FH includes surface adsorption with a mononuclear bidentate structure and internal physical inclusion. Higher content of LMWOAs in the FLAs promoted the photo-production of Fe(II) as compared to pure FH, while it was not the case for FLAs containing moderate amounts of LMWOAs. The distinct photochemistry of adsorbed and coprecipitated Fe-LMWOAs complexes is attributed to ligand availability and configuration patterns of LMWOAs on the surface or entrapped in the interior structure. The present findings have significant implications for understanding the photochemical redox cycling of iron across the interface of Fe-organic mineral associates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app