Add like
Add dislike
Add to saved papers

Genome-wide association study identifies DRAM1 associated with Tourette syndrome in Taiwan.

Biomedical Journal 2024 April 11
BACKGROUND: Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics. Several susceptibility loci associated with TS have been identified previously in populations of European descent using genome-wide association studies (GWAS). However, the exact pathogenic mechanism underlying TS is unknown; additionally, the results of previous GWAS for TS were based on Western populations, which may not translate to other populations. Therefore, we conducted a GWAS in Taiwanese patients with TS and chronic tic disorders (CTDs), with an aim to elucidate the genetic basis and potential risk factors for TS in this population.

METHODS: GWAS was performed on a Taiwanese TS/CTDs cohort with a sample size of 1,007 patients with TS and 25,522 ancestry-matched controls. Additionally, polygenic risk score was calculated and assessed.

RESULTS: Genome-wide significant locus, rs12313062 (p=1.43 × 10-8 ) and other 9 single nucleotide polymorphisms, were identified in chromosomes 12q23.2, associated with DRAM1 and was a novel susceptibility locus identified in TS/CTDs group. DRAM1, a lysosomal transmembrane protein regulated by p53, modulates autophagy and apoptosis, with potential implications for neuropsychiatric conditions associated with autophagy disruption.

CONCLUSIONS: This study conducted the first GWAS for TS in a Taiwanese population, identifying a significant locus on chromosome 12q23.2 associated with DRAM1. These findings provide novel insights into the neurobiology of TS and potential directions for future research in this area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app