Add like
Add dislike
Add to saved papers

Metabolomic changes following GenX and PFBS exposure in developing zebrafish.

Aquatic Toxicology 2024 April 4
Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app