Add like
Add dislike
Add to saved papers

Two-photon vision - Seeing colors in infrared.

Vision Research 2024 April 12
This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850-1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons. The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app