Add like
Add dislike
Add to saved papers

Impact of volatile organic compounds in large municipal solid waste landfills on regional environment.

Waste Management 2024 April 12
Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 μg/m3 ) and halohydrocarbon (111.2 μg/m3 -156.3 μg/m3 ), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app