Add like
Add dislike
Add to saved papers

A Study on the Field Emission Characteristics of High-Quality Wrinkled Multilayer Graphene Cathodes.

Nanomaterials 2024 March 31
Field emission (FE) necessitates cathode materials with low work function and high thermal and electrical conductivity and stability. To meet these requirements, we developed FE cathodes based on high-quality wrinkled multilayer graphene (MLG) prepared using the bubble-assisted chemical vapor deposition (B-CVD) method and investigated their emission characteristics. The result showed that MLG cathodes prepared using the spin-coating method exhibited a high field emission current density (~7.9 mA/cm2 ), indicating the excellent intrinsic emission performance of the MLG. However, the weak adhesion between the MLG and the substrate led to the poor stability of the cathode. Screen printing was employed to prepare the cathode to improve stability, and the influence of a silver buffer layer was explored on the cathode's performance. The results demonstrated that these cathodes exhibited better emission stability, and the silver buffer layer further enhanced the comprehensive field emission performance. The optimized cathode possesses low turn-on field strength (~1.5 V/μm), low threshold field strength (~2.65 V/μm), high current density (~10.5 mA/cm2 ), and good emission uniformity. Moreover, the cathode also exhibits excellent emission stability, with a current fluctuation of only 6.28% during a 4-h test at 1530 V.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app