Add like
Add dislike
Add to saved papers

Tuning spatially fractionated radiotherapy dose profiles using the moiré effect.

Scientific Reports 2024 April 12
Spatially Fractionated Radiotherapy (SFRT) has demonstrated promising potential in cancer treatment, combining the advantages of reduced post-radiation effects and enhanced local control rates. Within this paradigm, proton minibeam radiotherapy (pMBRT) was suggested as a new treatment modality, possibly producing superior normal tissue sparing to conventional proton therapy, leading to improvements in patient outcomes. However, an effective and convenient beam generation method for pMBRT, capable of implementing various optimum dose profiles, is essential for its real-world application. Our study investigates the potential of utilizing the moiré effect in a dual collimator system (DCS) to generate pMBRT dose profiles with the flexibility to modify the center-to-center distance (CTC) of the dose distribution in a technically simple way.We employ the Geant4 Monte Carlo simulations tool to demonstrate that the angle between the two collimators of a DCS can significantly impact the dose profile. Varying the DCS angle from 10 ∘ to 50 ∘ we could cover CTC ranging from 11.8 mm to 2.4 mm, respectively. Further investigations reveal the substantial influence of the multi-slit collimator's (MSC) physical parameters on the spatially fractionated dose profile, such as period (CTC), throughput, and spacing between MSCs. These findings highlight opportunities for precision dose profile adjustments tailored to specific clinical scenarios.The DCS capacity for rapid angle adjustments during the energy transition stages of a spot scanning system can facilitate dynamic alterations in the irradiation profile, enhancing dose contrast in normal tissues. Furthermore, its unique attribute of spatially fractionated doses in both lateral directions could potentially improve normal tissue sparing by minimizing irradiated volume. Beyond the realm of pMBRT, the dual MSC system exhibits remarkable versatility, showing compatibility with different types of beams (X-rays and electrons) and applicability across various SFRT modalities.Our study illuminates the dual MSC system's potential as an efficient and adaptable tool in the refinement of pMBRT techniques. By enabling meticulous control over irradiation profiles, this system may expedite advancements in clinical and experimental applications, thereby contributing to the evolution of SFRT strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app