Add like
Add dislike
Add to saved papers

Recycling composted human feces as biofertilizer for crop production: Assessment of soil and lettuce plant tissue contamination by Escherichia coli and human adenovirus.

Using waste from sewage systems, particularly human excreta, could save resources and increase soil fertility, contributing to nutrient management. However, because of the pathogenic content in human feces, this resource can pose health risks to farmers and consumers. Therefore, this work analyzed the behavior of the microorganisms: Escherichia coli ATCC13706 and human adenovirus (HAdV-2) in the soil and the internal part of the plant tissue during the vegetative stage after applying spiked composted human feces as biofertilizer. In a greenhouse, we simulated the application of the biofertilizer in lettuce cultivation by spiking three concentrations of E. coli (6.58, 7.31, and 8.01 log10 CFU.g-1 ) and HAdV-2 (3.81, 3.97, and 5.92 log10 PFU.g-1 ). As a result, we achieved faster decay in soil at higher concentrations of E. coli. We estimated linear decay rates of -0.07279, -0.09092, and -0.115 days, corresponding to T90 s of 13.7, 11.0, and 8.6 days from higher to smaller concentrations of E. coli, respectively. The estimated periods for the inactivation of 4 logarithmic units of E. coli bacteria in soil are longer than the cultivation period of lettuce for all concentrations studied. Concerning the bacterial contamination in plants, we found E. coli in the internal part of the leaves at the highest concentration tested during the first three weeks of the experiment. Furthermore, HAdV-2 was found in roots at a stable concentration of 2-2.3 log10 PFU.g-1 in five of the six samples analyzed. Therefore, bacterial infection could pose a risk, even if fresh greens are washed before consumption, especially for short-term cultures. Regarding viral infection, a positive result in the roots after disinfection may pose a risk to root and tubercule vegetables. These discoveries highlight the importance of conducting comprehensive evaluations of hygiene practices in incorporating organic amendments in crops, explicitly aiming to minimize the risk of post-contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app