Add like
Add dislike
Add to saved papers

Consequences of omitting some important factors in the environmental analyses of commercial sodium silicate/sodium hydroxide use for alkaline activation in the light of comparison with cement-based composites.

Alkali-activated materials (AAMs) based on various waste precursors were considered mostly as a sustainable alternative to Portland cement-based composites to date. However, a narrow focus on carbon dioxide savings in the environmental assessment of AAMs may not be sufficient to achieve a truly sustainable solution. Therefore, this paper provides a detailed insight into midpoint impact categories related to the production of AAMs based on waste precursors and conventional activators, as compared with common cement-based materials. The obtained results point to a higher environmental load of AAMs in several categories, such as ozone layer depletion, primary resource consumption, and terrestrial and aquatic ecotoxicity. In a hypothetical scenario, it is demonstrated that 10 % replacement of global concrete production by AAMs may result in notably increased emissions of ozone depletion substances (+35 %) and damage to the aquatic environment (+ 40 %). The risk for human health can then be higher. As for the aquatic environment, eutrophication can also lead to a significant increase in indirect emissions of CH4 and N2 O having a high impact on the greenhouse effect. Hence, the importance of robust interdisciplinary research in the environmental assessment of AAMs should be emphasized, together with the need to use alternative alkaline substances, which would be more environment-friendly than conventional activators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app