Add like
Add dislike
Add to saved papers

Comprehensive analysis of immunogenic cell death-related gene and construction of prediction model based on WGCNA and multiple machine learning in severe COVID-19.

Scientific Reports 2024 April 12
The death of coronavirus disease 2019 (COVID-19) is primarily due to from critically ill patients, especially from ARDS complications caused by SARS-CoV-2. Therefore, it is essential to contribute an in-depth understanding of the pathogenesis of the disease and to identify biomarkers for predicting critically ill patients at the molecular level. Immunogenic cell death (ICD), as a specific variant of regulatory cell death driven by stress, can induce adaptive immune responses against cell death antigens in the host. Studies have confirmed that both innate and adaptive immune pathways are involved in the pathogenesis of SARS-CoV-2 infection. However, the role of ICD in the pathogenesis of severe COVID-19 has rarely been explored. In this study, we systematically evaluated the role of ICD-related genes in COVID-19. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis based on ICD differentially expressed genes. The results showed that immune infiltration characteristics were altered in severe and non-severe COVID-19. In addition, we used multiple machine learning methods to screen for five risk genes (KLF5, NSUN7, APH1B, GRB10 and CD4), which are used to predict COVID-19 severity. Finally, we constructed a nomogram to predict the risk of severe COVID-19 based on the classification and recognition model, and validated the model with external data sets. This study provides a valuable direction for the exploration of the pathogenesis and progress of COVID-19, and helps in the early identification of severe cases of COVID-19 to reduce mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app