Add like
Add dislike
Add to saved papers

Controlled Molecular Orientation through Intercalation in PVDF Thin Films: Exhibiting Ultralong Retention and Improved Leakage Current.

Ferroelectric switching and retention performance of poly(vinylidene fluoride) (PVDF) thin films improve by the incorporation of unmodified smectite montmorillonite (MMT) clay nanodielectric. In the present study, an intercalated PVDF (clay/PVDF) thin film with edge-on β-crystallite is fabricated via a heat-controlled spin coating (HCSC) technique. This provides an efficient and simple way to fabricate the edge-on oriented crystallite lamellae with an electroactive β-phase, facilitating nanoscale ferroelectric switching at a lower voltage compared to the face-on orientation. Here, we demonstrate the polarization retention for periods longer than 20 days (∼480 h, i.e., 1.8 × 106 s), with no degradation in switched nanoscale domains. In addition, by maintaining the relatively high dielectric constant, the incorporation of nanoclay effectively lowers the leakage current by 102 factors. The obtained memory window in the edge-on orientation is 7 V, approximately twice the memory window obtained in the face-on orientation. In short, our findings provide a simple and promising route to fabricate edge-on oriented PVDF thin films, with ultralong retention, high dielectric constant, and improved leakage current.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app