Add like
Add dislike
Add to saved papers

Computational exploration of SLC14A1 genetic variants through structure modeling, protein-ligand docking, and molecular dynamics simulation.

The urea transporter UT-B1, encoded by the SLC14A1 gene, has been hypothesized to be a significant protein whose deficiency and dysfunction contribute to the pathogenesis of bladder cancer and many other diseases. Several studies reported the association of genetic alterations in the SLC14A1 (UT-B1) gene with bladder carcinogenesis, suggesting a need for thorough characterization of the UT-B1 protein's coding and non-coding variants. This study used various computational techniques to investigate the commonly occurring germ-line missense and non-coding SNPs (ncSNPs) of the SLC14A1 gene (UT-B1) for their structural, functional, and molecular implications for disease susceptibility and dysfunctionality. SLC14A1 missense variants, primarily identified from the ENSEMBL genome browser, were screened through twelve functionality prediction tools leading to two variants D280Y (predicted detrimental by maximum tools) and D280N (high global MAF) for rs1058396. Subsequently, the ConSurf and NetSurf tools revealed the D280 residue to be in a variable site and exposed on the protein surface. According to I-Mutant2.0 and MUpro, both variants are predicted to cause a significant effect on protein stability. Analysis of molecular docking anticipated these two variants to decrease the binding affinity of UT-B1 protein for the examined ligands to a significant extent. Molecular dynamics also disclosed the possible destabilization of the UT-B1 protein due to single nucleotide polymorphism compared to wild-type protein which may result in impaired protein function. Furthermore, several non-coding SNPs were estimated to affect transcription factor binding and regulation of SLC14A1 gene expression. Additionally, two ncSNPs were found to affect miRNA-based post-transcriptional regulation by creating new seed regions for miRNA binding. This comprehensive in-silico study of SLC14A1 gene variants may serve as a springboard for future large-scale investigations examining SLC14A1 polymorphisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app