Add like
Add dislike
Add to saved papers

The Significance of Parametric Mapping in Advanced Cardiac Imaging.

Cardiac magnetic resonance imaging has witnessed a transformative shift with the integration of parametric mapping techniques, such as T1 and T2 mapping and extracellular volume fraction. These techniques play a crucial role in advancing our understanding of cardiac function and structure, providing unique insights into myocardial tissue properties. Native T1 mapping is particularly valuable, correlating with histopathological fibrosis and serving as a marker for various cardiac pathologies. Extracellular volume fraction, an early indicator of myocardial remodeling, predicts adverse outcomes in heart failure. Elevated T2 relaxation time in cardiac MRI indicates myocardial edema, enabling noninvasive and early detection in conditions like myocarditis. These techniques offer precise insights into myocardial properties, enhancing the accuracy of diagnosis and prognosis across a spectrum of cardiac conditions, including myocardial infarction, autoimmune diseases, myocarditis, and sarcoidosis. Emphasizing the significance of these techniques in myocardial tissue analysis, the review provides a comprehensive overview of their applications and contributions to our understanding of cardiac diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app