Add like
Add dislike
Add to saved papers

Metamaterial Absorbers with Archimedean Tiling Structures: Toward Response and Absorption of Multiband Electromagnetic Waves.

With the continuous development of electromagnetic wave-absorbing materials, the design of artificial structures for electromagnetic absorbers based on the concept of metamaterials is becoming more abundant. However, in the design process, it is difficult to further broaden the effective absorption band due to the limitation that the traditional single-size structure responds to electromagnetic waves only in specific frequency bands. Therefore, in this paper, based on the moth-eye bionic hexagonal structure absorber with antireflection performance, an Archimedean tiling structure is designed to optimize it, and through the introduction of a variety of primitives with large differences in dimensions, a multifrequency band-response mechanism is achieved to enhance the multireflection mechanism, which can effectively broaden the absorption band and improve the wave absorption performance. Ultimately, the moth-eye bionic structure absorber optimized by (3.4.6.4) can achieve an effective absorption of 10.26 GHz at a thickness of 2 mm. This work presents a new idea for the design work of electromagnetic wave-absorbing metamaterials, which has a broad application prospect in the aerospace, electronic information countermeasures, communication, and detection industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app