Add like
Add dislike
Add to saved papers

Enhancing Phytoextraction Potential of Brassica napus for Contaminated Dredged Sediment Using Nitrogen Fertilizers and Organic Acids.

Dredged sediment contaminated with heavy metals can be remediated through phytoremediation. The main challenge in phytoremediation is the limited availability of heavy metals for plant uptake, particularly in multi-contaminated soil or sediment. This study aimed to assess the effect of the nitrogen fertilizers (ammonium nitrate (AN), ammonium sulfate (AS), and urea (UR)), organic acids (oxalic (OA) and malic (MA) acids), and their combined addition to sediment on enhancing the bioavailability and phytoremediation efficiency of heavy metals. The sediment dredged from Begej Canal (Serbia) had high levels of Cr, Cd, Cu, and Pb and was used in pot experiments to cultivate energy crop rapeseed ( Brassica napus ), which is known for its tolerance to heavy metals. The highest accumulation and translocation of Cu, Cd, and Pb were observed in the treatment with AN at a dose of 150 mg N/kg (AN150 ), in which shoot biomass was also the highest. The application of OA and MA increased heavy metal uptake but resulted in the lowest biomass production. A combination of MA with N fertilizers showed high uptake and accumulation of Cr and Cu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app