Add like
Add dislike
Add to saved papers

Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection.

Electronic skin (e-skin) is showing a huge potential in human-computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0-300%) and a high gauge factor of 0.27 in 180-300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0-15 kPa with a maximal sensitivity of 1.759 kPa-1 . Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20-90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app