Add like
Add dislike
Add to saved papers

Corrosion of an Additively Manufactured Ti6Al4V Alloy in Saline and Acidic Media.

Materials 2024 Februrary 3
The present work aims to provide corrosion performance data for an additively manufactured Ti6Al4V alloy in saline and polluted environments. The as-received additively manufactured material underwent heat treatment at 850 °C for 3 h to transform the acicular α' microstructure into a lamellar α microstructure. Comparative corrosion assessments were conducted between the heat-treated substrates, the as-received condition, and a conventionally mill-annealed alloy. Potentiodynamic polarization experiments were carried out in saline (3.5 wt.% NaCl) and acid aqueous media ((NH4 )2 SO4 containing Harrison's solution). The corrosion performance of additively manufactured substrates matched or surpassed that of the conventional alloy in Harrison's solutions while remaining inferior in saline medium, despite forming a thicker passive film. Overall, the XY plane showed better corrosion performance, particularly after the elimination of the acicular α' martensite by the applied heat treatment. The results also suggested that the presence of the coarse β phase was beneficial in 3.5 wt.% NaCl solution and detrimental in Harrison's solutions, more so in acidified and fluorinated conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app